Terrain Segmentation Using a U-Net for Improved Relief Shading

نویسندگان

چکیده

Since landforms composing land surface vary in their properties and appearance, shaded reliefs also present different visual impression of the terrain. In this work, we adapt a U-Net so that it can recognize selection segment We test efficiency 10 separate models apply an ensemble approach, where all are combined to potentially outperform single models. Our algorithm works particularly well for block mountains, Prealps, valleys, hills, delivering average precision f1 values above 60%. Segmenting plateaus folded mountains is more challenging, rather scattered due smaller areas available training. Mountains formed by erosion processes least recognized landform because similarities with other landforms. The highest accuracy one 65%, while 61%. relief shading techniques were found be efficient regarding specific within corresponding segmented blend them together. Finally, trained model best on mountainous around world, proves work regions beyond training area.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic segmentation of glioma tumors from BraTS 2018 challenge dataset using a 2D U-Net network

Background: Glioma is the most common primary brain tumor, and early detection of tumors is important in the treatment planning for the patient. The precise segmentation of the tumor and intratumoral areas on the MRI by a radiologist is the first step in the diagnosis, which, in addition to the consuming time, can also receive different diagnoses from different physicians. The aim of this study...

متن کامل

An Improved Neural Segmentation Method Based on U-NET

摘要:局部麻醉技术作为现代社会最为常见的麻醉技 术,具有安全性高,副作用小等优势。通过分析超声 图像,分割图像中的神经区域,有助于提升局部麻醉 手术的成功率。卷积神经网络作为目前最为高效的图 像处理方法之一,具有准确性高,预处理少等优势。 通过卷积神经网络来对超声图像中的神经区域进行分 割,速度更快,准确性更高。目前已有的图像分割网 络结构主要有U-NET[1],SegNet[2]。U-NET网络训练 时间短,训练参数较少,但深度略有不足。SegNet 网 络层次较深,训练时间过长,但对训练样本需求较多 由于医学样本数量有限,会对模型训练产生一定影响。 本文我们将采用一种改进后的 U-NET 网络结构来对超 声图像中的神经区域进行分割,改进后的 U-NET 网络 结构加入的残差网络(residual network)[3],并对每一层 结果进行规范化(batch normalizat...

متن کامل

Terrain Analysis Using Radar Shape-from-Shading

This paper develops a maximum a posteriori (MAP) probability estimation framework for shape-from-shading (SFS) from synthetic aperture radar (SAR) images. The aim is to use this method to reconstruct surface topography from a single radar image of relatively complex terrain. Our MAP framework makes explicit how the recovery of local surface orientation depends on the whereabouts of terrain edge...

متن کامل

U-Net: Convolutional Networks for Biomedical Image Segmentation

There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables prec...

متن کامل

Surface Relief Analysis for Illustrative Shading

In this paper, we present an analysis technique that leverages the complexity found in detailed 3D models for illustrative shading purposes. Given a smooth base surface with relief, it locates relief features (concavities, convexities and inflections) around each surface point and at multiple scales, using cubic-polynomial fitting. This object-space, per-vertex information is then used to guide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ISPRS international journal of geo-information

سال: 2022

ISSN: ['2220-9964']

DOI: https://doi.org/10.3390/ijgi11070395